
Taking 5G RAN Analytics and Control to a New Level
Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, Zhihua Lai

{xefouk,bozidar,mabalkwi,zhihualai}@microsoft.com
Microsoft

ABSTRACT
Open RAN, a modular and disaggregated design paradigm for
5G radio access networks (RAN), promises programmability
through the RAN Intelligent Controller (RIC). However, due
to latency and safety challenges, the telemetry and control pro-
vided by the RIC is mainly limited to higher layers and higher
time scales (> 10𝑚𝑠), while also relying on predefined service
models which are hard to change. We address these issues by
proposing Janus, a fully programmable monitoring and con-
trol system, specifically designed with the RAN idiosyncrasies
in mind, focused on flexibility, efficiency and safety. Janus
builds on eBPF to allow third-parties to load arbitrary codelets
inline in the RAN functions in a provably safe manner. We
extend eBPF with a novel bytecode patching algorithm that
enforces codelet runtime thresholds, and a safe way to collect
user-defined telemetry. We demonstrate Janus’ flexibility and
efficiency by building 3 different classes of applications (18
applications in total) and deploying them on a 100MHz 4x4
MIMO 5G cell without affecting the RAN performance.
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1 INTRODUCTION
A key transformation of the Radio Access Network (RAN)
in 5G is the migration to an Open RAN architecture, that
sees the RAN functions virtualized (vRAN) and disaggre-
gated. This approach fosters innovation by allowing vendors
to come up with unique solutions for different components
at a faster pace. Furthermore, a new Open RAN component,
called the Radio Intelligent Controller (RIC) [38, 42], allows
3rd parties to optimize the network by building data-driven,
vendor-agnostic monitoring and control applications [19, 30]
over open interfaces standardized by O-RAN [29].

Despite this compelling vision, the opportunity for innova-
tion largely remains untapped for two main reasons. First, the
RAN network functions can generate huge volumes of data at
a high frequency. Capturing, transferring and processing the
data for developing novel RIC applications can put a strain
on compute and network capacity. To overcome this, a con-
ventional approach, standardized by 3GPP [23, 24], defines
a small set of aggregate Key Perfomance Indicators (KPIs)
collected every few seconds or minutes. The O-RAN RIC
extends this idea with a new set of aggregate KPIs and data
sources [36]. Each KPI is defined through a service model (a
static API that is embedded in the vRAN functions [35]) and
prescribes what data can be collected and at which granularity.
However, this approach is slow to evolve and doesn’t scale
well. Anyone who has a use case that doesn’t fit into the exist-
ing service models, needs to specify a new service model with
a different set of KPIs. They then need to work with a selected
RIC and RAN vendor to add support for this service model
and go through a lengthy standardization process, where all
O-RAN vendors must be convinced to support it.

Second, many key RAN operations, like user radio resource
scheduling and power control, must be completed within a
deadline, typically ranging from a few tens of `s to a few ms.
To meet the deadlines, any related control logic and inference
must run inline inside the vRAN functions, rather than on
the RIC, which has been designed to deal with time-scales
> 10ms [89]. The existing RIC approach deals with this issue
by specifying service models tailored to specific use cases,
each with a supported set of policies (choose one out of 𝑁
available algorithms). However, this also does not scale, since
it does not allow the flexible introduction of new control and in-
ference algorithms. Furthermore, the real-time nature of many
vRAN operations means that any new functionality added
in order to support a new service model must be completed

https://doi.org/10.1145/3570361.3592493
https://doi.org/10.1145/3570361.3592493
https://doi.org/10.1145/3570361.3592493
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570361.3592493&domain=pdf&date_stamp=2023-07-10


ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, Zhihua Lai

within the processing deadline of the vRAN function, since
a deadline violation may cause performance degradation [56]
or even crash a vRAN (as we show in §7.2). This makes RAN
vendors reluctant to add new features and service models.

To address the limitations that arise from the static nature of
the existing RIC service models, we propose Janus, a system
that provides dynamic monitoring and control vRAN function-
ality. Janus extends the RIC by allowing operators and trusted
third-parties to write their own telemetry, control and inference
pieces of code (we call them codelets) that can be deployed at
runtime at different vRAN components, without any assistance
from vendors and without disrupting the vRAN operation. The
codelets are executed inline, allowing them to get direct access
to raw vRAN data structures, to collect arbitrary statistics and
to make real-time inference and control decisions.

While Janus significantly enhances the RIC capabilities, it
also comes with its own challenges. The first has to do with
flexibility. It is unclear which RAN monitoring data and con-
trol knobs should be exposed to developers to build useful apps.
We solve this by identifying key locations and interfaces (we
call them hooks) within the vRAN architecture that provide
rich data and unlock a wide range of control applications. We
also build a toolchain that allows developers to define arbitrary
output schemas to ship the collected data to the RIC. We show
in §4 that Janus codelets can be used to implement O-RAN
service models and can also enable fast and efficient control
and inference operations (e.g., radio resource allocation and
interference detection), not possible using the O-RAN RIC.

The second challenge is about safety of execution. While
codelets are provided by trusted parties, they can still have er-
rors and inefficiencies in terms of invalid memory accesses or
high execution times, leading to corruption of data, violation
of real-time deadlines and ultimately, to the crash of the vRAN
functions. We solve this challenge, by providing a sandboxed
execution environment based on eBPF [5, 105], which solves
a similar problem in the Linux kernel [3]. Codelets are written
in C and are compiled into eBPF bytecode. The bytecode runs
inside a virtual environment inlined in the vRAN’s control
and data path, with direct access to selected internal RAN data
structures and control functions. Prior to loading a codelet, the
eBPF bytecode is statically verified [60, 105] and only codelets
that are safe in terms of memory accesses are allowed to run.

We further extend this model to tailor it to the vRAN require-
ments. We introduce hard, `s-level control in the execution
latency of codelets through an eBPF bytecode patching mech-
anism that preempts a codelet that exceeds a certain runtime
threshold. Furthermore, we extend the static verification to
cover the newly introduced flexible output data structures and
we provide several optimizations to ensure a non-preemtible
design in the fast path, minimizing Janus’ impact to the per-
formance of the vRAN. Finally, we integrate Janus with a
commercial 5G vRAN stack from CapGemini [46] (based on
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Figure 1: High-level vRAN architecture and processing
and throughput requirements of vRAN functions.

the Intel FlexRAN reference design [69]) and with the open
source 4G/5G stack of OpenAirInterface (OAI) [37].

In summary, we make the following contributions:
• We propose the first safe and programmable framework for

dynamically introducing flexible monitoring and control
capabilities to vRAN functions (§3). We illustrate its func-
tionality by developing new telemetry, control and inference
applications (18 applications in total) (§4).
• We propose and build mechanisms for enforcing codelet ex-

ecution runtimes and for safe data collection, to ensure that
the vRAN meets its safety and latency requirements (§5).
• We present a concrete and optimized implementation of

Janus (§6) and perform a thorough evaluation (§7).
We hope that Janus will gather O-RAN community support

and will be integrated with the O-RAN RIC in the future.

2 BACKGROUND & MOTIVATION
2.1 vRAN Architecture
The 5G RAN consists of several layers, illustrated in Fig 1
(e.g., PHY, MAC, RLC). Each layer is responsible for a dis-
tinct set of control and/or data plane operations. For example,
the PHY is responsible for the signal processing and the MAC
for the real-time scheduling of radio resources among the
User Equipments (UEs). The layers are distributed among
three network functions called the Radio Unit (RU), the Dis-
tributed Unit (DU) and the Centralized Unit (CU), which is
further broken down into control plane and user-plane (CU-
CP and CU-UP). The RU is typically ASIC or FPGA-based,
while, the CU and the DU are virtualized (i.e., vCU and vDU)
and are running on commodity hardware [68, 103]. Different
components have different latency requirements(c.f. [43]) and
generate events and data at different rates, as shown in Fig 1.

The communication between the vRAN components is
achieved through open interfaces specified by standardization
bodies like 3GPP, O-RAN [29] and the Small Cell Forum [52],
and programmability is facilitated through a near real-time
RIC [59]. Network operators install applications (xApps in the
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O-RAN terminology) on the RIC to collect data and leverage it
for monitoring, inference, and near real-time (> 10𝑚𝑠) closed
loop control. Data collection and control is facilitated through
service models that are embedded in the vRAN functions by
vendors and define the xApps’ capabilities in terms of the type
and frequency of data reporting and supported control policies.

2.2 vRAN programmability limitations
The initial focus of RIC use cases has been on self-optimizing
networks, anomaly detection and coarse grained radio re-
source allocation [72, 84, 89, 97]. In such use cases, signifi-
cant network events and control decisions occur at a low rate
(10s to 100s per second). This allows xApps to collect all
the required telemetry, perform inference and tune the vRAN
functions through a pre-determined set of control policies.
Unfortunately, this approach has some important limitations:
Data volume limitations: Many applications like localiza-
tion [74], channel estimation [77, 80], interference detec-
tion [75] and beamforming [81] require uplink IQ samples
from the PHY. Transporting all IQ samples to the RIC is in-
feasible 1. The current RIC design overcomes this problem by
specifying the data required in terms of frequency and type
(e.g., sub-sampling vs. averages) in the service model of each
xApp (e.g., as in [48, 49]). This poses a serious limitation to
interoperability, since vRAN vendors must implement and
support each proprietary service model.
Real-time limitations: Some vRAN control loops, like UE
radio resource allocation, have tight time constraints (10s of
`s to a few ms). Such time constraints cannot be met by the
current RIC design, that has an expected latency > 10ms [89].
xApps overcome this issue by using a set of pre-defined poli-
cies offered by service models, which can run inline inside
the vRAN functions. However, this approach doesn’t scale as
the number of policies increases. For example, several control
algorithms have been proposed for network slicing (e.g., [53,
61, 64, 73, 83, 99]), each tailored to a specific use case. Imple-
menting such algorithms as part of a service model becomes
extremely difficult, since all RAN vendors must adopt them.

2.3 vRAN programmability requirements
We argue that, to unlock the true RIC capabilities, a new solu-
tion is needed, which should meet the following requirements:
(1) Flexible telemetry, where trusted developers can access
raw vRAN data and choose the type, frequency and granular-
ity of the exported data, based on the requirements of their
application and the limitations of the infrastructure.
(2) Capability to implement arbitrary control and inference
logic that can run inline inside the RAN functions in real-time.
(3) A safe execution environment, that guarantees that any
(trusted) code that is running inside the vRAN functions will
1It requires more than 1.5 Gbps per cell for 100 MHz 4 × 4 MIMO
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Figure 2: The high-level architecture of Janus.

not crash the vRAN by performing invalid memory accesses
or by leading to real-time processing deadline violations.

3 JANUS OVERVIEW
To overcome the aforementioned limitations, Janus introduces
an inline code execution framework that allows the dynamic
loading of custom telemetry or control/inference code in a
sandboxed environment in the vRAN functions.

3.1 Inline code execution framework
The high-level architecture of Janus is illustrated in Fig 2. We
next describe the main components.
Janus device: A Janus device is any vRAN component (i.e.,
a vCU or vDU) that allows execution of custom code. Janus
introduces Janus call points, or hooks, at selected places in
vRAN functions, at which custom eBPF code can be invoked.
The invocation is inlined with the vRAN code and gives the
eBPF code read-only access to a selected internal vRAN con-
text, which includes various 3GPP-defined data structures and
events (see Table 1 and §3.2). The type of data that is passed
to a codelet depends on the layer the hook is introduced to
and could include packets of users, signaling messages etc. A
custom code can be loaded and unloaded dynamically from a
Janus device, at runtime, without affecting the device’s perfor-
mance. We opted for eBPF as the sandboxing technology be-
cause it is inlined, fast, supports writing codelets in a high level
language (C), provides static code verification and has been
met with widespread success in several networking projects
(e.g., [4, 8, 13, 15]). For more technical details about eBPF,
we refer the interested reader to [17, 18]. Other approaches
that we considered, such as Sandbox2 [62] and SAPI [63], run
custom code in separate processes incurring extra IPC latency.
WebAssembly [65] is inlined, but its lack of static verification
can lead to memory violation issues [76].
Janus codelets: A Janus codelet is a custom code that can
be deployed at a single hook at runtime. Developers write
codelets in C and compile them into eBPF bytecode. Similar to
any eBPF program, a Janus codelet must be statically verifiable
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Hook point vRAN function(s) Context description
Raw UL IQ samples vDU Capture uplink IQ samples sent by RU to vDU through xRAN 7.2 interface [32]

FAPI interface vDU Capture scheduling and data plane packets exchanged between MAC and PHY layers [52]
RLC vDU Capture information about buffers of mobile devices and RLC mode/parameters [25]

F1/E1/Ng/Xn interfaces vCU/vDU Capture control/data-plane messages exchanged between 3GPP interfaces of vCU/vDU/5G core [20–22, 27]
RRC vCU Capture RRC messages exchanged between mobile devices and the base station [26]

Table 1: Janus monitoring hooks introduced in commercial-grade vCU/vDU network functions and OpenAirInterface.

(e.g., code must introduce memory checks and can only have
bounded loops). Any operations required by the codelet that
could be potentially unsafe (e.g., accessing memory outside
of the region allocated to the codelet) can only be performed
through a set of white-listed helper functions. A codelet does
not keep any state between two invocations. All state must be
stored in an external location called a map. A codelet sends
its telemetry data through a special map to a Janus output
thread running at the device, which forwards it to the Janus
controller. Similarly, a codelet can receive control commands
from a control application running at the Janus controller. The
command is received by a controller thread and is then pushed
to a special map, to be received by the codelet. A codeletset
is an ensemble of codelets that operate across multiple Janus
hooks of a Janus device and coordinate with very low latency
through shared maps. Codelets across devices can coordinate
through a controller if needed.
Janus controller and SDK: The Janus controller is responsi-
ble for controlling the Janus devices and codeletsets. Develop-
ers upload their codeletsets to the controller, with load/unload
instructions for one or more Janus devices. Before the con-
troller allows a codeletset to be loaded, it verifies the safety
and termination of each codelet. The controller further instru-
ments the verified bytecode with control code that pre-empts
it if its runtime exceeds some threshold (see Section 5.1). The
(patched) codelets are JIT compiled and pushed to Janus de-
vices over the network, along with metadata files required
for enabling the flexible output of data and input of control
commands using protobuf schemas (see Section 5.2). The
controller provides a data collector, which collects and deseri-
alizes the data sent from the Janus codelets. It also provides an
API that allows control applications to send arbitrary control
commands to loaded Janus codelets (see Section 5.2). Janus
also provides an SDK that includes a compiler, a verifier and a
debugger, as well as the definitions of all the helper functions
and map types that are supported by Janus devices.

3.2 New vRAN RIC capabilities
We describe the new monitoring and control capabilities that
Janus enables, through a simple, yet realistic, example (List-
ing 1). The example refers to a codelet developed for the vDU
of OpenAirInterface [37]. The codelet is invoked by a hook
that is introduced at the FAPI interface ([101], Fig 1). FAPI

messages are C structures with information about the sched-
uling of radio resources to UEs. In this codelet, a counter
maintaining the number of captured FAPI messages is sent
to the data collector once every 1000 events. While simple,
this codelet captures important features that demonstrate the
power of Janus over the conventional RIC design.

1 struct janus_load_map_def SEC("maps") countermap = {
2 .type = JANUS_MAP_TYPE_ARRAY ,
3 .key_size = sizeof(uint32_t),
4 .value_size = sizeof(uint32_t),
5 .max_entries = 1,
6 };
7
8 struct janus_load_map_def SEC("maps") outmap = {
9 .type = JANUS_MAP_TYPE_RINGBUF ,

10 .max_entries = 1024,
11 .proto_msg_name = "output_msg",
12 .proto_name = "output_msg",
13 .proto_hash = PROTO_OUTPUT_MSG_HASH ,
14 };
15
16 SEC("janus_ran_fapi")
17 uint64_t bpf_prog(void *state) {
18 void *c;
19 uint32_t index = 0, counter;
20 nfapi_dl_config_request_pdu_t *p, *pend;
21 output_msg s;
22
23 struct janus_ran_fapi_ctx *ctx = state;
24 p = (nfapi_dl_config_request_pdu_t *)ctx ->data;
25 pend = (nfapi_dl_config_request_pdu_t *)ctx ->data_end;
26
27 if (p + 1 > pend) return 1;
28
29 if (p->ndlsch_pdu > 0) {
30 c = janus_map_lookup_elem (&countermap , &index);
31 if (!c) return 1;
32 counter = (*(int *)c + p->ndlsch_pdu);
33 if (counter == 1000) {
34 s.counter = counter;
35 janus_ringbuf_output (&outmap , &s, sizeof(s));
36 counter = 0;
37 }
38 }
39 return 0;
40 }

Listing 1: Example Janus codelet

Secure access to rich vRAN data: The state argument in
line 17 of Listing 1 is the context passed to a Janus hook and
contains a pointer to a FAPI structure [52, 92] (line 24). It de-
scribes the scheduling allocation for a particular downlink slot,
comprised of more than 20 fields per user, including transport
block size, allocated resource blocks, MIMO etc. The verifier
ensures read-only access to the context. Due to the modular
vRAN design, there is a small number of similar standardized
interfaces specified (3GPP, Small cell forum, O-RAN) that
carry all relevant state across vRAN components. By adding
hook points at these interfaces we can give developers access
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Hook point Type of control

xRAN packet transmission/reception xRAN fronthaul procedure [32] –
Drop/Forward/Modify xRAN packets sent and received by the radio unit

MAC scheduler invocation MAC scheduling procedure [52] –
Set modulation & coding scheme, uplink power and allocated resource blocks of UEs

RRC event handler
(Triggered by event or timer)

Radio Resource Management-related procedures [26, 34] –
Modify/Forward/Drop/Generate RRC message

Table 2: Janus control hooks introduced in commercial-grade vDU network functions and OAI.

to a large trove of vRAN telemetry. We have identified and
implemented these hooks (Table 1) and we demonstrate in §4
how they can be used to enable several applications without
modifying a single line of code inside the vRAN functions.
Statefulness: Janus codelets rely on shared memory regions
known as maps to store state across consecutive invocations
and to exchange state with other codelets. Janus provides var-
ious map types for storing data, including arrays, hashmaps
and Bloom Filters. In this example, we maintain a counter of
FAPI packets using a single-element array map (lines 1-6). On
each invocation, the counter reference is restored from mem-
ory through a helper function (line 30) and incremented with
the new number of packets (line 32). Various safety checks
are required to enable static verification (e.g. lines 27 and 31).
Safe & expressive custom control operations: Janus allows
the introduction of custom control logic in the vRAN network
functions. As with telemetry, we propose the introduction of
control hooks in a small number of well-defined locations
introduced by the relevant standardization bodies: i) fronthaul
traffic control [32], ii) MAC scheduling control [52], and iii)
Radio Resource Management [26, 34]. Janus control hooks fol-
low an approach similar to XDP for Linux [105]. Codelets are
allowed to modify the input state passed by the control hook as
part of the context (e.g., modify a fronthaul packet header or
generate/modify a MAC scheduling decision). Only a single
codelet is allowed to be loaded at each control hook. Along
with the context/packet modifications, codelets must provide
a return code, which is used by the vRAN vendor to decide
what action to take (e.g., forward/drop packet, ignore/apply
scheduling decision etc.). As a first step towards this direction,
we implemented a small number of control hooks, listed in
Table 2. The hooks provide a subset of the envisioned con-
trol capabilities, but can already enable a large range of novel
applications, which we present in more details in §4. As an
example, we used the MAC scheduler invocation hook point
to implement 3 real-time network slicing algorithms from the
literature in OAI.
Flexible schemas: Janus codelets can send arbitrary teleme-
try data to the data collector using flexible output schemas
through a special type of ringbuffer map (lines 8-14). This
map is linked to a codelet-specific protobuf schema defined
by the codelet developer (see Section 5.2). This example uses
a custom protobuf schema called output_msg (line 21), with

a single counter field (line 34). The data is exported to the
data collector through a helper function (line 35). This flex-
ibility allowed us to implement the data models currently
available in the O-RAN RIC specs without modifying a single
line of code in the vRAN, after our Janus vRAN hooks were
in place. We apply the same mechanism to enable external
control applications (e.g., applications running on the RIC)
to dynamically modify the behavior of codelets (e.g. the val-
ues of some codelet parameters) by sending control messages
using custom user-defined APIs (see Section 5.2).

4 NOVEL JANUS USE CASES
Here, we illustrate the benefits of Janus using several repre-
sentative examples of telemetry, inference and control appli-
cations that we built (for evaluation see §7).
Flexible monitoring: We use Janus to implement codelets
that extract KPIs specified in the KPM model of O-RAN [31]
(lines 1-8 in Table 3), as well as raw scheduling data (lines
9-10) without changing a single line of code in the vRAN
functions. This demonstrates the ability of Janus to build new
and change existing O-RAN service models [42, 59] on the
fly, without undergoing a lengthy standardization process. For
example, we were able to collect the downlink total Physical
Resource Block (PRB) usage KPI [23], by tapping into the
FAPI hook of Table 1 and capturing the number of PRBs
allocated to each user at each scheduling decision using the
nfapi_dl_config_request_pdu_t struct (Listing 1). The
data of this struct were stored in a Janus map, averaged over
a 0.5ms period and sent to the Janus data collector.
Low overhead, real-time inference: To demonstrate how
Janus can overcome the data volume limitation described
in §2.2, we developed an application that allows us to de-
tect external radio interference by transforming an operational
5G radio unit to a spectrum sensor. Our application leverages
a codeletset for the data collection, which is composed of two
codelets that use maps for coordination. The first detects idle
resource blocks when there are no 5G transmissions (installed
at the FAPI hook of Table 1) and the second extracts IQ sam-
ples from the observed idle resource blocks (installed at the IQ
samples hook of Table 1) and exports them to the application.
The application detects and reports interference, if the energy
level of the (unused) IQ samples exceeds a certain threshold.
The flexibility of Janus allows us to adjust the fidelity and
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Line Name Type Benefit LOC Short Ref
1 Total DL PRB Usage M

Data aggregation without introducing new service model

207 KPM1 5.1.1.2.1 [23]
2 Total UL PRB Usage M 171 KPM2 5.1.1.2.2 [23]
3 Distr. of DL PRB Usage M 232 KPM3 5.1.1.2.3 [23]
4 Distr. of UL PRB Usage M 197 KPM4 5.1.1.2.4 [23]
5 Total num. of initial DL TBs M 152 KPM5 5.1.1.7.1 [23]
6 Total num. of DL TBs M 156 KPM6 5.1.1.7.3 [23]
7 Total num. of initial UL TBs M 155 KPM7 5.1.1.7.6 [23]
8 Total num. of UL TBs M 157 KPM8 5.1.1.7.8 [23]
9 Raw DL scheduling info M Real-time telemetry without introducing new service model 137 RAW1 -
10 Raw UL scheduling info M 150 RAW2 -

11 Interference detection I Detection with 40x less telemetry bandwidth
by sampling and correlation at source (vRAN) 265 ID -

12 ARIMA I Up to 12% increase in cell throughput
by real-time inference of user signal quality 81 ML1 [44]

13 Decision tree I Reclaim up to 70% CPU cycles from vRAN PHY
by real-time inference of PHY processing runtime 10495 ML2 [56]

14 Random forest I Up to 30% reduction in user RTT latency
by real-time prediction of user buffer status report 51 ML3 [94, 111]

15 Earliest deadline first slicing C Near zero delay budget violation for URLLC slices
compared to conventional scheduler 174 SL1 [64]

16 Static slicing C Up to 21% improvement in cell throughput for eMBB slices
compared to conventional scheduler 41 SL2 [83]

17 Proportional fair slicing C Up to 25% improvement in cell throughput for eMBB slices
compared to conventional scheduler 384 SL3 [83]

18 Inter-Cell Interference Coordination C Up to 30% increase in cell throughput by real-time
coordinated radio resource scheduling 73 ICIC [54]

Table 3: Monitoring (M), control (C) and inference (I) Janus use cases we developed, with lines of code (LOC).

overhead of the interference detector as needed, by specifying
a number of parameters in terms of which antenna ports and
symbols to collect IQ samples from, as well as the collection
frequency and granularity (e.g., raw IQ samples vs average en-
ergy per resource block). As we show in §7.2, performing this
pre-proceessing inline, instead of exporting raw IQ samples to
the RIC, allowed us to reduce the telemetry bandwidth by a fac-
tor of 40. A similar approach can be used to implement other
inference use cases that require radio channel telemetry data
(e.g., localization [74, 98] and channel estimation [48, 49]).

Furthermore, many RAN control loops can benefit from
real-time parameter prediction to improve the network per-
formance [39, 40, 51, 58, 77, 95, 102, 111, 113]. Due to the
O-RAN RIC latency, xApps provide predictions that are 10s of
milliseconds old [33, 88]. Using Janus, we were able to build
codelets that perform inference inside the vRAN functions with
under 10ms latency. We demonstrate this with the inference
models listed in lines 12-14 of Table 3. The first is an ARIMA
model for the prediction of user signal quality, following a
methodology similar to [44]. The second is a quantile decision
tree for the prediction of signal processing task runtimes, using
the methodology in [56]. More complex models, such as the
Random Forest in [111], are more difficult to implement with
eBPF, as they result in a large number of bytecode instructions
(> 100K) making the verification process challenging. To over-
come this, we added Janus support for Random Forests in the
form of a map (JANUS_MAP_TYPE_ML_MODEL). A pre-trained
serialized random forest model can be passed to Janus and
linked to this map during the codelet loading. Janus parses the
serialized model to verify it and reconstructs it in memory. The
model can then be accessed by the codelet for inference using

a helper function janus_model_predict(). This is similar
to the serialization feature offered by frameworks like Ten-
sorflow for micro-controllers [104] and could be extended to
other commonly used ML models (e.g., LSTM).
Flexible and real-time control: Many enterprise applications
require network slicing for service QoS guarantees [50, 55] .
Existing O-RAN service models allow for a set of pre-defined
slice scheduling policies [45, 72, 97] that control scheduling
at 10s of milliseconds granularity. Using Janus, we enabled
real-time slicing with arbitrary scheduling policies with a
granularity of 0.5-10ms, something impossible with today’s
RIC model. We relied on the MAC scheduling hook of Janus
from Table 2, which is invoked by the MAC scheduler in the
beginning of each scheduling period. The hook receives the
scheduling state of the base station as context (number of
devices, buffer sizes, signal quality etc), along with a structure
carrying the scheduling decision. Using this hook, we were
able to implement three slicing schedulers as Janus codelets,
as listed in Table 3 (lines 15-17).

Custom control commands also allow for the flexible de-
ployment of near real-time control applications, without any
further modifications in the vRAN functions for the introduc-
tion of new service models. For example, by using a custom
control command that allowed us to modify the number of
allocated resource blocks of each cell centrally from the Janus
controller, we were able to implement an inter-cell interfer-
ence mitigation application [54] (line 18 in Table 3). The
application introduces Almost Blank Subframes to cells in
a centralized manner, ensuring that neighboring cells do not
transmit/receive data at the same time.
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5 SYSTEM DESIGN CHALLENGES
5.1 Runtime control
The existing eBPF verifier can assert memory safety and termi-
nation – if a codelet does not provably terminate, it is rejected.
However, as explained in §2.3, it does not give sufficiently
tight guarantees on the codelet worst-case execution time.

5.1.1 Challenge of estimating runtimes. One simple approach
to estimating the worst-case execution time is to analyze the
maximum number of eBPF instructions a codelet can exe-
cute. This information is inferred through static analysis for
the codelet’s longest path, taking into account bounded loops.
However, it is very difficult to translate the number of in-
structions into the expected runtime, as this can depend on a
number of factors, including the CPU clock, the memory and
cache hierarchy, the translation of the eBPF instructions to
JIT code etc. [47, 107]. An additional challenge for Janus are
the helper functions, whose execution time can widely vary
between functions and across parameter values.

To illustrate these challenges, consider the codelets in List-
ings 2 and 3. Both perform a 1000 iterations loop, with the
first calling a helper function in the loop. The verifier indicates
that the codelet of Listing 3 requires 64 more instructions com-
pared to the one of Listing 2. However, for a reference Xeon
Platinum 8168 CPU @ 2.7GHz, we observe that the codelet of
Listing 2 is more expensive (runtime of 4.3 `s vs 2.4 `s for the
codelet of Listing 3). This is because the helper function incurs
a higher overhead compared to the multiplication and addition
instructions of the other codelet, indicating that the maximum
number of instructions is not a good proxy of the max runtime.

1 for (int k = 0; k < 1000; k++) {
2 index = 0;
3 c = janus_map_lookup_elem (&counter , &index);
4 s.counter = k + 10;
5 }

Listing 2: Loop w/ helper function (avg runtime: 4.3 `s)
1 for (volatile int k = 0; k < 1000; k++) {
2 counter += i;
3 counter2 = counter * i;
4 s.counter += counter2;
5 i++;
6 }

Listing 3: Loop w/o helper function (avg runtime: 2.4 `s)
5.1.2 Enforcing runtime through bytecode patching. To ad-
dress these challenges, Janus injects instructions in the eBPF
bytecode that measure the codelet execution time while run-
ning and preempts the codelet if a threshold is exceeded. A
helper function (mark_init_time()) is added at the begin-
ning of the codelet (Fig 3), which stores the current time in
a thread local variable. The patcher introduces checkpoints
in selected locations (Algorithm 1) that invoke a helper func-
tion (runtime_limit_exceeded(), line 18 in Fig 3), which
checks the elapsed runtime since mark_init_time() and
compares it against a threshold. If the threshold is exceeded,
the codelet is forced to exit and return an error (lines 19-21 in

….  
10:       r1 = 1400
11:       r2 = 1
12:       *(u32 *)(r10 - 4) = r2
13:       r3 = *(u32 *)(r10 - 4)
….

01:       mark_init_time()
02:       freq_counter = 0
….  
12:       r1 = 1400
13:       r2 = 1
14:       freq_counter += 1  
15:       if freq_counter != freq goto +7 <23>
16:       freq_counter = 0 
17:       store register state to stack
18:       r0 = runtime_limit_exceeded()
19:       if r0 == 0 goto +2 <32>
20:       r0 = 65535
21:       exit
22:       restore register state from stack
23:       *(u32 *)(r10 - 4) = r2
24:       r3 = *(u32 *)(r10 - 4)

Checkpoint after instruction 11

Injected runtime check code

Original codelet eBPF bytecode

Patched codelet eBPF bytecode

Initial timestamp

Figure 3: Simplified version of code patching process.

Fig 3). The runtime threshold is specified during the loading of
the codeletset. Finally, the patcher updates all jump offsets to
account for the injected instructions. This approach allows us
to verify the patched bytecode, ensuring that any modifications
made by the patcher do not affect the safety of the codeletset.

The time check is implemented as a helper function, be-
cause it calls the Intel rdtsc instruction, which does not have
a counterpart in the eBPF instruction set. The helper function
call invalidates eBPF registers r0 - r5, which could be storing
state from the normal codelet execution flow. To ensure verifi-
ability, Janus stores and reloads the values of those registers
(lines 17 and 22 in Fig 3). This requires that codelets have
at least 48 bytes free in their stack (eBPF functions have 512
bytes stacks). We believe that this is a reasonable requirement,
given that codelets can always use maps to store more state.
Points of injection: A key question when patching is where
to inject the checkpoints. We want to limit the maximum num-
ber of instructions 𝑁 between two consecutive checkpoints to
reduce the effect of the runtime jitter (shown in Listings 2 - 3).
However, each checkpoint incurs overhead (a call to the helper
function runtime_limit_exceeded(), saving and restoring
registers, etc.). All this adds up to more than ∼24ns per check-
point for a reference Xeon Platinum 8168 CPU @ 2.7GHz. To
keep the overhead low, Janus spreads the checkpoints using
Algorithm 1. Initially, Janus adds checkpoints right after the
invocation of helper functions marked by the vendors as long
lasting (line 2). Next, it uses the static analysis of the verifier to
enumerate (from shortest to longest) all the simple paths from
the first instruction of the codelet to the last and all the cycles.
For each path, Janus adds a checkpoint every 𝑁 instructions
(lines 11-14). The algorithm takes into account checkpoints
that have already been added during the traversal of other
paths. If a checkpoint is found, the counting of instructions is
reset, using the existing checkpoint as the starting point (lines
8-9). At least one checkpoint is added on each cycle even if the
distance is smaller than 𝑁 (lines 17-19). This guarantees that
a checkpoint can always be reached once every 𝑁 instructions.

For finer control, Janus allows vendors to instrument check-
points in their helper functions, which perform a similar op-
eration as the patch of Fig. 3. For example, in the case of the
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Algorithm 1: Checkpoint injection decision
Data: 𝑁 > 0, list 𝐹 of codelet instructions, where long lasting helper

functions are called, ordered list 𝑃 of all simple codelet paths
from first to last instruction and cycles (increasing length)

Result: List𝐶 of checkpoint instructions positions
1 𝐶 ← {};
2 foreach instruction 𝑓 in 𝐹 do𝐶 ← 𝐶 + 𝑓 ;
3 foreach 𝑝 in 𝑃 do
4 ins← 0;
5 fins← first instruction of 𝑝;
6 foreach instruction 𝑖 in 𝑝 do
7 ins← ins + 1;
8 if 𝑖 has already checkpoint then
9 ins← 0;

10 else
11 if ins = 𝑁 then
12 𝐶 ← 𝐶 + 𝑖;
13 ins← 0;
14 end
15 end
16 end
17 if 𝑝 is cycle and no checkpoint was added then
18 𝐶 ← 𝐶 + fins;
19 end
20 end

random forest model (see §4), we added such checks after the
inference of each estimator (tree) of the model. Given that the
overhead can become significant even for a few checkpoints
(e.g., in codelets with tight loops), the patch code performs
checks with a sampling frequency (1 out of 𝑀 checkpoint
hits). The patcher adds a 32-bit counter in the eBPF stack and
performs a check only when this counter reaches some value
(line 15 of Fig 3, right); otherwise, the execution flow jumps
back to the original instruction. This guarantees that a check
is performed at least once every 𝑀 × 𝑁 instructions.
Pre-empted control loops: Each control hook must provide a
default control action, in case a control codelet is pre-empted
(or fails). A pre-empted codelet returns a CONTROL_FAILED
code and the default action provided by the RAN vendor is
executed (as shown in Listing 4).2 For example, in the case of
the MAC scheduling hook of Table 2, the default action could
be to assign the radio resource blocks equally. Similarly, for the
xRAN packet transmission hook, it would be to forward any
xRAN packet. If a codelet is pre-empted𝑁 times (configurable
parameter), then the codeletset it belongs to is unloaded and
the Janus controller is notified. Finally, Janus provides a helper
function check_preemption(), which allows a codelet to
check if it was pre-empted during its previous run. This allows
codelets to reset their operation, if they have dirty state.

1 decision = hook_custom_janus_control_operation(ctx);
2 if (decision != CONTROL_SUCCESS)
3 decision = call_default_control_operation(ctx);

Listing 4: Pseudo-code for Janus custom control hook

2The same mechanisms address the case of no codelet being loaded.

5.2 Flexible and verifiable IO schemas
Janus allows the definition of arbitrary output and input control
schemas, loaded with the codelet at runtime. Both output and
input control data are serialized by Janus using protobufs.
However, adding arbitrary schemas can compromise safety.
Specifically Janus has to deal with two challenges.

1 message Example {
2 repeated in t 32 element = 1;
3 }
4 Example . e lement max_count:16

Listing 5: Example of output schema definition with
variable size fields (up to 16 elements).

The first is making sure that codelets cannot generate arbi-
trarily large serializable messages and cannot read arbitrarily
large control inputs, which could violate memory safety. Pro-
tobuf messages are defined by the developer and can contain
variable size fields (e.g. repeated fields). The Janus verifier
is not aware of the actual size of a message at compile time,
hence it cannot statically verify it. To overcome this prob-
lem, Janus requires an upper bound for all protobuf input
and output schemas with variable-sized fields in the message
specification, as shown in Listing 5. Janus allocates the max-
imum message size for the C representation exposed to the
codelet, and reports the size to the verifier (in this case 16×
sizeof(int32) + sizeof(int16) = 66B). This allows for
static verification at the expense of slightly increased memory
consumption (which is not a bottleneck in a vRAN system).

The second challenge is related specifically to output schemas
and making sure that an incorrectly formatted message cannot
lead to memory violations. Consider a case where a program-
mer allocates 30B of memory, casts it as an Example message,
sets the number of elements to be 16 and calls the output helper
function to send the data to the controller. Since the memory
chunk is too small for 16 elements, the encoder will attempt
to encode from a memory outside the allocated chunk, which
may lead to a segfault. To ensure memory safety, we modify
the verifier to assert that the memory passed to the protobuf
encoder is always equal to the maximum possible size (66B in
this case). Bugs like the above are still functionally incorrect
and send garbled data, but do not violate safety.

6 IMPLEMENTATION DETAILS
6.1 Janus components implementation
Janus device: The Janus device is implemented in C as a dy-
namically linked library. It is based on a uBPF [71], which we
extended to add support for the Janus maps, helper functions,
the mechanism for input/output APIs etc. Overall, we had to
add ∼7K lines of code to the basic implementation. The Janus
device was developed without making any assumptions about
the threading model of the vRAN functions (e.g., affinity of
threads calling hooks). However, Janus can be configured to
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allow the optimization of the library, if such information is
known. We have taken great care in ensuring that the fast-path
of Janus (where hooks might be invoked in time-critical parts
of the vRAN functions), will never be blocked or pre-empted.
Janus controller: The Janus controller is written in Go (data
collector) and Python (codelet loader/patcher), with ∼4K lines
of code. The controller communicates with Janus devices
through a TCP-based API using protobuf. For the codelet
verification, we used the open source PREVAIL verifier [60],
which we extended with ∼1K lines of code to add support for
Janus specific functionalities (i.e., helper functions). Finally,
the Janus patcher relies on pyelftools [1] and LLVM [16] to
manipulate the codelets’ ELF file contents.
Janus SDK: The Janus SDK is written in Python (∼1K lines
of code) and shares parts of its codebase with the Janus con-
troller. It relies on LLVM for the compilation of codelets to
eBPF bytecode, on uBPF [71] for the conversion of the byte-
code to x86 JIT code and on nanopb [9] for the compilation
of protobuf messages for the codelets’ output schemas.

6.2 Thread safety of Janus codelets
Janus hooks can be invoked by multiple threads, which could
raise concurrency issues. We have thus implemented a number
of mechanisms that can help with the thread-safety of Janus:
Thread-safe maps – Janus provides a lock-free, thread safe
hashmap implementation, as well as thread-local hashmaps
and arrays, which can be useful for codelets that only want
to store local state. It also comes with a wait-free thread-safe
ringbuffer implementation, that is used for IO.
Atomic operations – eBPF bytecode already provides sup-
port for atomic operations (e.g., atomic[64]_[fetch_]add),
which we have ported to the Janus x86 JIT compiler.

With regards to the thread-safety of the hook context, it is
important to note that codelets are executed inline, so they are
implicitly granted access to the same RAN state as their host
code. As such, they enjoy the same multi-threading protection
as any other inlined function call that might be using this
state. This could come in the form of a hook being called with
different context state for different thread instances or with
the vendor passing a unique thread identifier as part of the
context, to allow the codelet to differentiate calling instances.

6.3 vRAN integration
Integrating Janus to vRAN functions is simple and fast. As a
proof-of-concept, we integrated Janus devices to two vRAN
software implementations. One is the commercial-grade 5G
vCU/vDU implementation developed by CapGemini [46], and
based on Intel’s FlexRAN PHY design [69]. The other is the
open source OAI [37]. Both are written in C/C++ and the
integration and linking of Janus code was straightforward. For
the integration of Janus we had to add approximately 50 lines
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Figure 4: vRAN testbed infrastructure and performance

of initialization code in each vRAN function that we tested,
as well as ∼30 lines of code for each new hook we introduced.
The initial integration effort took 2 weeks for the CapGemini
stack, with a single developer, who was unfamiliar with our
codebase. The OAI integration effort was similar.

7 PERFORMANCE EVALUATION
7.1 Experimental setup
Hardware and software setup: For the evaluation of Janus
we use a server equipped with 48 physical cores (Intel Xeon
Platinum 8168 @ 2.7GHz) and 196GB of RAM with hyper-
threading disabled. The server is running Linux v5.15 with the
PREEMPT_RT real-time patches applied [93] and optimizations
for real-time performance, including disabled P and C-States
and hugepages of 1GB. We opted for this configuration, as it is
typical for the deployment of vRAN functions [56, 70, 106].

For the evaluation, we use three setups. The first is an end-
to-end setup, composed of the commercial grade 5G vRAN
stack of CapGemini [46], with integrated Janus devices (see
§6), a commercial-grade 5G core, 100MHz 4 × 4 Foxconn
radio units and 5G OnePlus Nord smartphones (Fig 4a). Aside
from LDPC [67], all vRAN tasks run on x86 processors. Using
this setup, we are able to deploy 3 cells with a 4 × 4 MIMO
configuration3 and to generate a max of 1Gbps downlink and
45Mbps uplink per cell, which is a representative capacity and
MIMO configuration of a commercial deployment. This setup
is instrumented with Janus collecting IQ samples, FAPI and
RLC data (see Table 1). In the remainder of this section, and
when referring to this setup, we present our measurements
for a single cell for simplicity, given that we obtained similar
results for all 3 cells. In the second setup we instrument 4G
OAI with hooks to RRC/F1 and FAPI data, as well as the inter-
slice radio resource allocation hook of Table 2. The final setup
uses a Janus emulator, which is a single-threaded process that

3We do not investigate massive MIMO or mmWaves, due to lack of access to
such an implementation. We plan to investigate this in our future work.
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runs in a loop and invokes codelets attached to Janus hooks.
We use this setup for microbenchmarks (§7.3).

In all setups, the Janus hooks are invoked by affinitized
threads and scheduled using the SCHED_FIFO policy, with a
scheduling priority of 94. For runtime measurements, we use
a time measuring framework based on the guidelines in [85].
Finally, note that Janus requires a single CPU core for all of its
functionalities. The rest are allocated to the vRAN functions.
Codelet runtime budgets: We use our 5G RAN setup to
determine how much time we can allocate to Janus codelets
without affecting the RAN performance. We focus on the PHY,
as all other layers have less stringent timing requirements.
Transmissions and receptions of packets in the PHY occur in
Transmission Time Intervals (TTIs) of a fixed duration [56].
Using our CapGemini setup we measure the runtimes of the
PHY per TTI when saturated (1Gbps DL and 45Mbps UL)
over a period of 15 minutes. Fig 4b shows the maximum UL
and DL runtimes as a function of CPU cores. We also plot
the processing deadline for the given configuration based on
the vendor guidelines. The difference (orange), is the runtime
budget for Janus codelets, and it varies from 200 `s to 600 `s.

While these numbers may seem high, in practice the limits
are much smaller for several reasons. Some codelets may be
executed multiple times per TTI. For example, the IQ sam-
ple processing from §4 is called 14 times per TTI (one per
OFDM symbol). Furthermore, multiple codelets can be loaded
on different hooks, sharing the overall time budget. Finally,
more demanding PHY configurations, such as massive MIMO
(which we are not able to evaluate at the moment), will likely
leave less spare CPU time for Janus hooks. Our design goal
assumes a codelet run-time budget can be as low as 20`s.

7.2 End-to-end system evaluation
Here we demonstrate the flexibility of collecting telemetry
using Janus codeletsets and the safety provided by Janus when
loading the codelets in an end-to-end environment. For the
safety part, we evaluate the runtime control mechanism de-
scribed in §5.1. The effectiveness of the static analysis of the
eBPF verifier that is used by the Janus controller is extensively
studied in [60]. Similarly, we point the reader to the references
and the short description of Table 3 for the performance results
of the algorithms we used for our implemented codelets.

We use the interference detection application described in
§4 as a representative example codeletset for our analysis. We
deploy a USRP software-defined radio as an external interferer
that generates a repetitive interference pattern with 5s of inter-
ference and 5s of silence. A spectrum view of the interference
is shown in Fig 5a (thin spikes) during a real 5G downlink
transmission. We run downlink iperf measurements between
one of the OnePlus Nord 5G phones and the 5G vRAN and
we see about 30% of packet loss when the interferer is active.

(a) Spectral view of interfer-
ence (background spikes) in
presence of a 5G downlink
transmission.
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Figure 5: Spectral view of interference and detection using
data collected through Janus.

While running the measurement, we load the Janus codelets
for interference detection, described in §4. We implement a
simple interference detector at the controller that continuously
tracks the mean and the variance of the input signals per re-
source block and declares interference if the input is larger than
the mean plus 3 times standard deviation. We show in Fig. 5b
that this approach successfully detects all interfering periods.
Codelet patching prevents RAN crashes: Next, we show
how Janus can effectively deal with codelets that, while verifi-
able, can be unsafe for the operation of the vRAN due to long
execution times. We wrote a different codelet for the same
experiment that is correct, but deliberately written to be inef-
ficient. It allocates 13KBs of memory for a temporary struct,
memsets the memory with zeroes byte by byte in a tight for
loop and then copies the IQ samples passed by the hook one by
one in a second for loop before sending them to the controller.

Our deliberately inefficient codelet is verified as correct by
the verifier, as it is deemed safe in terms of memory access, as
well as provably terminates (bounded loop). However, once
this codelet is loaded to our end-to-end vRAN deployment
unpatched, it crashes the vRAN. As it can be seen by the
CDF in Fig 6a, this codelet runs for 51.4 `s on the median
and 52.2 `s on the 99.999 percentile. Given that the hook of
the raw IQ samples is called 14 times for each TTI (one per
OFDM symbol), the codelet runs for a total of 719.6 `s on
average, which is greater than the 600 `s time budget that we
have for the UL chain of the vRAN (shown in Fig 4b).

We then patch the codelet using the Janus patcher and we
re-load it to the vRAN with a runtime threshold of 5 `s. As it
can be seen in Fig 6a, the patched version of the codelet is pre-
empted early and so the median runtime now becomes exactly
5 `s and the 99.999 percentile becomes 5.04 `s. While this
codelet no longer sends IQ samples out (as it is pre-empted),
the vRAN remains protected, as no deadlines are violated.
Reduction in data collection bandwidth: In the same inter-
ference detection example, the two codelets coordinate their
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Figure 6: Pre-emption of unsafe codelet and benefits of
programmability with codelets for data collection

outputs to reduce the overall data collection bandwidth, as ex-
plained in §4. In order to evaluate the benefit of coordination,
we also implement the same scenario using a more centralized
approach where the coordination happens at a RIC. In this
approach, two codelets independently send all of the sched-
uling data and the raw IQ samples to the controller (∼ 13KB
of data per symbol) instead of correlating their inputs locally
and sending only IQ samples for the idle slots.

For these setups, we measure the output data throughput to
the Janus collector, as well as the runtime of the two codelet-
sets, as is illustrated in Fig 6b. As shown at the top sub-plot, the
naive interference detection method results in a data collection
rate of 172Mbps, while the inline pre-processing method re-
sults in a collection rate of 4.5Mbps; almost 40× less. The run-
time of the codelets with pre-processing is lower by ∼ 3.5 `s
compared to the naive case, despite the extra pre-processing
work. This is because the naive approach requires a memset
and a memory copy of 13KBs each time the codeleset sends
the raw IQ samples out, while the pre-processing approach
only requires ∼400B per call. Custom pre-processing is im-
possible with the O-RAN RIC, since a service model has been
specified for the use case and integrated by the RAN vendors.
Codelets runtimes: Due to lack of space we don’t discuss
each scenario from §4 in depth. Instead, we report the median
and tail (99.999) runtimes of the 18 codelets of Table 3 in
Fig 7, using the shorthand names of the table. We consider the
worst execution case for each codelet (i.e., maximum number
of devices, maximum bandwidth etc) and report the time for
patched codelets. We use a patching distance 𝑁 = 60 and a
sampling frequency of 𝑀 = 10 (see §7.3 for details on the
choice of parameters). We observe that the runtime of all the
codelets is well below the 20`s time budget discussed in §7.1
(< 8`s for the worst codelet), with the most demanding being
the slicing schedulers (SL1 and SL3), the interference detec-
tion codeletset (ID) and the raw scheduling data monitoring
codelets (RAW1 and RAW2). To put this into perspective, all
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Figure 7: Patched codelets (Table 3) worst-case runtime.

codelets combined take < 0.5% of the eMBB slot processing
time budget. We further demonstrate this by deploying all the
codelets marked as monitoring in Table 3 on our 5G vRAN
deployment at the same time, while saturating the network
with traffic (1Gbps DL and 45Mbps UL). We do not observe
any change in the link performance after loading the codelets.

7.3 Microbenchmarks
Patching overhead and reactiveness: Here, we explore the
behavior of the patching process (§5.1), by studying the most
computationally demanding codelets of Table 3, based on the
runtime results of §7.2 (i.e., RAW1, ID, SL1 and SL3). The re-
maining codelets of Table 3 present similar patching behaviors
and thus are omitted, due to space constraints.

First, we study Algorithm 1 in terms of the number of
introduced checkpoints for various checkpoint distances 𝑁 .
As we can see in Fig 8a, the more instructions a codelet has
(listed under the label of each codelet), the more checkpoints
are introduced. Moreover, as we increase 𝑁 , the number of
checkpoints drops. The number of checkpoints is in almost all
cases slightly higher than the number of instructions divided
by 𝑁 , meaning that some checkpoints have a distance smaller
than 𝑁 , if the code was to be executed sequentially. Inspection
of the bytecode reveals that the excess checkpoints are mainly
introduced in tight loops (< 𝑁 instructions), which, if unrolled,
form a block of more than 𝑁 instructions, demonstrating that
our patching algorithm can effectively capture such cases.

Next, we study the behavior of codelets for various patching
distances (parameter 𝑁 ) and sampling frequencies (parameter
𝑀). The results in Fig 8b show the runtime of patched codelets
without a runtime threshold, compared to the unpatched ver-
sion. The runtime overhead can become significantly high
for a small 𝑁 (e.g. more than 100% for ID), because runtime
checks are executed very often, while reducing the sampling
frequency can help (e.g., as shown in the case of 𝑁 = 10 and
𝑀 = 30 for ID). On the other hand, a large value of 𝑁 and
a reduced sampling frequency (large 𝑀) is translated to less
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Figure 8: Analysis of codelet patching behavior and comparison with alternative approaches.

runtime checks, leading to higher mean and tail latencies for
pre-empting codelets, as shown in Fig 8c (runtime threshold
set to 400ns). For 𝑁 = 60 and 𝑀 = 30, the tail runtime of
RAW1 and ID is almost 100% more than the runtime threshold.
Based on our evaluation of all the codelets of Table 3, we find
that the values 𝑁 = 60 and 𝑀 = 10 draw the best balance
between runtime overhead and pre-emption latency.

Finally, we compare the checkpoint method of Algorithm 1,
with an alternative method proposed in [108, 109], where
checkpoints are introduced on each basic block of the control
flow graph of the patched code. For the basic blocks method,
we use a sampling frequency of 𝑀 = 30, which yields similar
pre-emption tail latency results to the Janus patcher for𝑁 = 60
and 𝑀 = 10. As shown in Fig. 8d, the basic blocks approach
incurs in most cases higher runtime overhead (99.999 tail)
compared to the Janus patcher (e.g., more than 2× higher
overhead for the SL1 codelet). The reason for this increased
overhead is that in many cases, basic blocks can be very small
(2-3 instructions). If such a basic block is visited often (hot
code), then the instructions added by the checkpoint can more
than double its runtime, even if sampling frequency checks
are used. The approach taken by Janus is more disciplined in
the sense that it allows the RAN operator or vendor to choose
the exact number of instructions between two checkpoints.
Janus hook overhead: To measure the overhead of idle
Janus hooks, we use the dummy Janus device and measure the
elapsed time for calling a single or 10 Janus hooks, without any
codelet loaded, over 2M iterations. The results are presented
in Table 4 for the median, 99.9 and 99.999 percentile. As we
can observe, in the case of a single hook call, the overhead
is negligible (< 1ns) for all cases. The difference goes up to
10ns for the 99.9 and 99.999 percentile in the case of the 10
hooks (∼ 1ns per hook call). We conclude that adding hooks
to the vRAN code has negligible impact on its performance.
Codelet overhead when extracting data: We next evaluate
the codelet overhead when placing data to the output map (this

Median 99.9 99.999
Single empty janus hook < 1ns < 1ns < 1ns

10 empty janus hooks < 1ns 10ns 10ns
Table 4: Median/tail execution time of empty Janus hook.
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Figure 9: Codelet execution runtime and maximum kpps
for SizeMessage1 message [90] with fields of varying size.

does not include the overhead of the output thread and proto-
buf serialization). We base our benchmarking on a protobuf
message SizeMessage1 defined as part of the benchmarking
suite of the protobuf library [90]. This message contains 62
fields in total, both simple (e.g., int32, int64, bool) and vari-
able sized (string and repeated fields). We write a codelet
that populates a SizeMessage1 with random content and for
different message sizes, and sends it. As we can observe in
Fig 9a, for small packet sizes (< 2KB) the execution runtime
both at the median and the tail remains below 1 `s and then
gradually increases for large packet sizes, but always remains
below 2`s even for jumbo packets of 9KB. In practice, none
of the codelets that we wrote for the use cases in §4 required
to send monitoring packets of more than 2KB, meaning that
the output overhead for most practical scenarios is very low.
Networking overhead: Finally, we measure the networking
overhead for serializing and sending telemetry to the controller.
We use the same setup as in the previous experiment and we
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measure the maximum achievable packet sending rate (blue
line in Fig 9b). For small packets (< 500𝐵), Janus can send
more than 80kpps, which drops to 20kpps when sending 9KB
packets. To put this into perspective, the number and size of
packets for a single cell falls within the orange area of Fig 9b
for the telemetry codelets of §4. This means that a single
Janus device can handle up to 4 cells (light blue and orange
area) for demanding use cases and more than double for more
lightweight monitoring. The output rate of Janus is currently
limited by the socket-based UDP communication. This can be
seen by the orange line of Fig 9b, where we discard packets
instead of sending them out, for a 25% increase in the output
rate. In the future, we plan on introducing kernel bypassing
for the networking (e.g., DPDK) to alleviate this limitation.

8 DISCUSSION AND LIMITATIONS
Support for complex ML models - As discussed in §4, the
development of large ML-models (e.g., Random Forests) as
Janus codelets is challenging.We believe that our proposed
map-based approach for loading ML models in a serialized
format and performing inference through helper functions
is powerful, considering that several RAN ML use cases
rely on the same models (e.g., Random Forests, LSTMs and
RNNs [28, 51, 66, 77, 96, 102, 110, 111]). We are planning
on extending this approach to support additional widely-used
ML models beyond Random Forests.
Janus in vRANs with HW accelerators - In this work, we
focused on vRANs that only use look-aside hardware acceler-
ators for offloading computationally heavy tasks, like LDPC
decoding (e.g., Intel FlexRAN). In the case of vRANs that
rely on inline accelerators for the full processing of the physi-
cal layer (e.g., Nvidia Aerial [10], Qualcomm [14] and Mar-
vell [12]), Janus cannot be integrated to the physical layer.
However, we believe that it can still be very useful for vRAN
monitoring and control, considering that the remaining vRAN
layers are implemented in software. In fact, 6 out of the total
of 8 hooks of Tables 1 and 2 are placed at the higher layers
and, as such, are applicable to any vRAN implementation.
Support for architectures beyond x86 - Janus currently sup-
ports x86-based vRAN functions. However, given the emer-
gence of other vRAN architectures (e.g. ARM-based [2]), we
are planning on extending Janus to support such use cases.
This mainly requires modifications to the JIT compiler of
Janus, that converts the eBPF bytecode to native code.
Other use cases for Janus - Here, we presented a number of
use cases that could benefit from the dynamic service model
capabilities of Janus. As a future work, we are planning on
exploring additional use cases, including localization [74],
channel estimation [77, 80], smart scheduling of radio re-
sources for energy savings [87, 100], resilience (e.g., in the
spirit of [58] and anomaly detection [57, 86]. We will also

explore the use of Janus in other domains, like for example for
telemetry and control applications for mobile core functions,
like the UPF.

9 RELATED WORK
Pushing arbitrary code to vRAN functions - The works
in [54, 82] argue about the need for real-time RAN programma-
bility, by loading arbitrary code in the vRAN functions at run-
time. While these works are conceptually similar to Janus, they
don’t propose a safe way to implement such features, making
their proposal unacceptable for realistic deployments. They
are also only shown to operate on lower-end setups (10× less
throughput than what we show for Janus) and don’t provide
access to high throughput data streams such as IQ samples.
Patching code with checkpoints - Adding compiler-assisted
checkpoints has been explored as a way of improving fault
tolerance by periodically saving the software state [78, 79,
91, 112, 114]. The choice of checkpoints in such systems is
typically made with the goal of minimizing the energy over-
head without affecting recoverability, which leads to different
design choices compared to those of Janus. Closer to Janus,
the works in [108, 109] focus on adding checkpoints for as-
serting whether the allotted worst-case execution time of a
real-time system has been exceeded. Contrary to Janus, such
checks require hardware assistance and checkpoints are added
in every basic block of the running program, which, as shown
in §7.3 has a higher overhead compared to the Janus patcher.
RAN data collection - RAN data collection has been ex-
plored both in terms of API specifications (e.g., O-RAN RIC
E2 service model [35, 97] and FlexRAN API [54]) to logging
systems (e.g. OAI T-tracer [11], SCOPE data collection mod-
ule [41])). However, such solutions offer no flexibility to adapt
the type, volume and frequency of collected data based on the
application’s needs, which is one of the main design goals of
Janus. Similar observations can be made for eBPF-based data
collection solutions, which either offer a fixed set of metrics
(e.g. Hubble [7]) or data can only be exported in certain for-
mats, like counters and histograms (e.g., ebpf_exporter [6]).

10 CONCLUSIONS
In this work we presented Janus, a fully programmable and
safe monitoring and control framework for 5G RAN. It allows
operators to load custom codelets with custom data models
in real-time, significantly increasing flexibility offered by the
existing O-RAN RIC. We demonstrated this flexibility by
building and evaluating 18 applications in 3 different classes
(most not achievable with O-RAN RIC). Janus achieves safety
using static verification and codelet pre-emption. Its modular
design makes it is easy to add to existing vRAN products. We
hope that Janus will be eventually adopted by the O-RAN
community to help accelerate innovation in the Open RAN.
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